Upload 15 files
This commit is contained in:
parent
c083ebc6d5
commit
c99357eaf6
|
|
@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||
example_images/2d0fbcc50e88065a040a537b717620e964fb4453314b71d83f3ed3425addcef6.png filter=lfs diff=lfs merge=lfs -text
|
||||
example_images/annual_rep_14.png filter=lfs diff=lfs merge=lfs -text
|
||||
example_images/annual_rep_15.png filter=lfs diff=lfs merge=lfs -text
|
||||
example_images/gazette_de_france.jpg filter=lfs diff=lfs merge=lfs -text
|
||||
example_images/paper_3.png filter=lfs diff=lfs merge=lfs -text
|
||||
example_images/redhat.png filter=lfs diff=lfs merge=lfs -text
|
||||
|
|
|
|||
11
README.md
11
README.md
|
|
@ -1,12 +1,13 @@
|
|||
---
|
||||
title: SmolDocling 256M Demo
|
||||
emoji: 🖼
|
||||
colorFrom: purple
|
||||
colorTo: red
|
||||
title: SmolVLM
|
||||
emoji: 📊
|
||||
colorFrom: blue
|
||||
colorTo: green
|
||||
sdk: gradio
|
||||
sdk_version: 5.0.1
|
||||
sdk_version: 5.12.0
|
||||
app_file: app.py
|
||||
pinned: false
|
||||
license: apache-2.0
|
||||
---
|
||||
|
||||
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
||||
268
app.py
268
app.py
|
|
@ -1,154 +1,152 @@
|
|||
import gradio as gr
|
||||
import numpy as np
|
||||
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
|
||||
from transformers.image_utils import load_image
|
||||
from threading import Thread
|
||||
import re
|
||||
import time
|
||||
import torch
|
||||
import spaces
|
||||
import re
|
||||
import ast
|
||||
import html
|
||||
import random
|
||||
|
||||
# import spaces #[uncomment to use ZeroGPU]
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
from PIL import Image, ImageOps
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
||||
from docling_core.types.doc import DoclingDocument
|
||||
from docling_core.types.doc.document import DocTagsDocument
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch_dtype = torch.float16
|
||||
else:
|
||||
torch_dtype = torch.float32
|
||||
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
||||
image = image.convert("RGB")
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
||||
pipe = pipe.to(device)
|
||||
width, height = image.size
|
||||
|
||||
MAX_SEED = np.iinfo(np.int32).max
|
||||
MAX_IMAGE_SIZE = 1024
|
||||
pad_w_percent = random.uniform(min_percent, max_percent)
|
||||
pad_h_percent = random.uniform(min_percent, max_percent)
|
||||
|
||||
pad_w = int(width * pad_w_percent)
|
||||
pad_h = int(height * pad_h_percent)
|
||||
|
||||
corner_pixel = image.getpixel((0, 0)) # Top-left corner
|
||||
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
|
||||
|
||||
return padded_image
|
||||
|
||||
def normalize_values(text, target_max=500):
|
||||
def normalize_list(values):
|
||||
max_value = max(values) if values else 1
|
||||
return [round((v / max_value) * target_max) for v in values]
|
||||
|
||||
def process_match(match):
|
||||
num_list = ast.literal_eval(match.group(0))
|
||||
normalized = normalize_list(num_list)
|
||||
return "".join([f"<loc_{num}>" for num in normalized])
|
||||
|
||||
pattern = r"\[([\d\.\s,]+)\]"
|
||||
normalized_text = re.sub(pattern, process_match, text)
|
||||
return normalized_text
|
||||
|
||||
|
||||
# @spaces.GPU #[uncomment to use ZeroGPU]
|
||||
def infer(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
seed,
|
||||
randomize_seed,
|
||||
width,
|
||||
height,
|
||||
guidance_scale,
|
||||
num_inference_steps,
|
||||
progress=gr.Progress(track_tqdm=True),
|
||||
):
|
||||
if randomize_seed:
|
||||
seed = random.randint(0, MAX_SEED)
|
||||
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
||||
model = AutoModelForVision2Seq.from_pretrained("ds4sd/SmolDocling-256M-preview",
|
||||
torch_dtype=torch.bfloat16,
|
||||
#_attn_implementation="flash_attention_2"
|
||||
).to("cuda")
|
||||
|
||||
generator = torch.Generator().manual_seed(seed)
|
||||
@spaces.GPU
|
||||
def model_inference(
|
||||
input_dict, history
|
||||
):
|
||||
text = input_dict["text"]
|
||||
print(input_dict["files"])
|
||||
if len(input_dict["files"]) > 1:
|
||||
if "OTSL" in text or "code" in text:
|
||||
images = [add_random_padding(load_image(image)) for image in input_dict["files"]]
|
||||
else:
|
||||
images = [load_image(image) for image in input_dict["files"]]
|
||||
|
||||
image = pipe(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
guidance_scale=guidance_scale,
|
||||
num_inference_steps=num_inference_steps,
|
||||
width=width,
|
||||
height=height,
|
||||
generator=generator,
|
||||
).images[0]
|
||||
elif len(input_dict["files"]) == 1:
|
||||
if "OTSL" in text or "code" in text:
|
||||
images = [add_random_padding(load_image(input_dict["files"][0]))]
|
||||
else:
|
||||
images = [load_image(input_dict["files"][0])]
|
||||
|
||||
return image, seed
|
||||
else:
|
||||
images = []
|
||||
|
||||
if text == "" and not images:
|
||||
gr.Error("Please input a query and optionally image(s).")
|
||||
|
||||
examples = [
|
||||
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
||||
"An astronaut riding a green horse",
|
||||
"A delicious ceviche cheesecake slice",
|
||||
]
|
||||
if text == "" and images:
|
||||
gr.Error("Please input a text query along the image(s).")
|
||||
|
||||
css = """
|
||||
#col-container {
|
||||
margin: 0 auto;
|
||||
max-width: 640px;
|
||||
}
|
||||
"""
|
||||
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
|
||||
text = normalize_values(text, target_max=500)
|
||||
|
||||
with gr.Blocks(css=css) as demo:
|
||||
with gr.Column(elem_id="col-container"):
|
||||
gr.Markdown(" # Text-to-Image Gradio Template")
|
||||
resulting_messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [{"type": "image"} for _ in range(len(images))] + [
|
||||
{"type": "text", "text": text}
|
||||
]
|
||||
}
|
||||
]
|
||||
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
||||
inputs = processor(text=prompt, images=[images], return_tensors="pt").to('cuda')
|
||||
|
||||
with gr.Row():
|
||||
prompt = gr.Text(
|
||||
label="Prompt",
|
||||
show_label=False,
|
||||
max_lines=1,
|
||||
placeholder="Enter your prompt",
|
||||
container=False,
|
||||
generation_args = {
|
||||
"input_ids": inputs.input_ids,
|
||||
"pixel_values": inputs.pixel_values,
|
||||
"attention_mask": inputs.attention_mask,
|
||||
"num_return_sequences": 1,
|
||||
"no_repeat_ngram_size": 10,
|
||||
"max_new_tokens": 8192,
|
||||
}
|
||||
|
||||
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
|
||||
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
|
||||
|
||||
thread = Thread(target=model.generate, kwargs=generation_args)
|
||||
thread.start()
|
||||
|
||||
yield "..."
|
||||
buffer = ""
|
||||
doctag_output = ""
|
||||
|
||||
for new_text in streamer:
|
||||
if new_text != "<end_of_utterance>":
|
||||
buffer += html.escape(new_text)
|
||||
doctag_output += new_text
|
||||
yield buffer
|
||||
|
||||
if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<formula>", "<chart>"]):
|
||||
# final_output = buffer
|
||||
# cleaned_output = final_output[len(inputs.input_ids):] if len(final_output) > prompt_length else final_output
|
||||
doc = DoclingDocument(name="Document")
|
||||
if "<chart>" in doctag_output:
|
||||
doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
||||
doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output)
|
||||
|
||||
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images)
|
||||
doc.load_from_doctags(doctags_doc)
|
||||
yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
|
||||
|
||||
examples=[[{"text": "Convert this page to docling.", "files": ["example_images/2d0fbcc50e88065a040a537b717620e964fb4453314b71d83f3ed3425addcef6.png"]}],
|
||||
[{"text": "Convert this table to OTSL.", "files": ["example_images/image-2.jpg"]}],
|
||||
[{"text": "Convert code to text.", "files": ["example_images/7666.jpg"]}],
|
||||
[{"text": "Convert formula to latex.", "files": ["example_images/2433.jpg"]}],
|
||||
[{"text": "Convert chart to OTSL.", "files": ["example_images/06236926002285.png"]}],
|
||||
[{"text": "OCR the text in location [47, 531, 167, 565]", "files": ["example_images/s2w_example.png"]}],
|
||||
[{"text": "Extract all section header elements on the page.", "files": ["example_images/paper_3.png"]}],
|
||||
[{"text": "Identify element at location [123, 413, 1059, 1061]", "files": ["example_images/redhat.png"]}],
|
||||
[{"text": "Convert this page to docling.", "files": ["example_images/gazette_de_france.jpg"]}],
|
||||
]
|
||||
|
||||
demo = gr.ChatInterface(fn=model_inference, title="SmolDocling-256M: Ultra-compact VLM for Document Conversion 💫",
|
||||
description="Play with [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
|
||||
examples=examples,
|
||||
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
|
||||
cache_examples=False
|
||||
)
|
||||
|
||||
run_button = gr.Button("Run", scale=0, variant="primary")
|
||||
|
||||
result = gr.Image(label="Result", show_label=False)
|
||||
|
||||
with gr.Accordion("Advanced Settings", open=False):
|
||||
negative_prompt = gr.Text(
|
||||
label="Negative prompt",
|
||||
max_lines=1,
|
||||
placeholder="Enter a negative prompt",
|
||||
visible=False,
|
||||
)
|
||||
|
||||
seed = gr.Slider(
|
||||
label="Seed",
|
||||
minimum=0,
|
||||
maximum=MAX_SEED,
|
||||
step=1,
|
||||
value=0,
|
||||
)
|
||||
|
||||
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
||||
|
||||
with gr.Row():
|
||||
width = gr.Slider(
|
||||
label="Width",
|
||||
minimum=256,
|
||||
maximum=MAX_IMAGE_SIZE,
|
||||
step=32,
|
||||
value=1024, # Replace with defaults that work for your model
|
||||
)
|
||||
|
||||
height = gr.Slider(
|
||||
label="Height",
|
||||
minimum=256,
|
||||
maximum=MAX_IMAGE_SIZE,
|
||||
step=32,
|
||||
value=1024, # Replace with defaults that work for your model
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
guidance_scale = gr.Slider(
|
||||
label="Guidance scale",
|
||||
minimum=0.0,
|
||||
maximum=10.0,
|
||||
step=0.1,
|
||||
value=0.0, # Replace with defaults that work for your model
|
||||
)
|
||||
|
||||
num_inference_steps = gr.Slider(
|
||||
label="Number of inference steps",
|
||||
minimum=1,
|
||||
maximum=50,
|
||||
step=1,
|
||||
value=2, # Replace with defaults that work for your model
|
||||
)
|
||||
|
||||
gr.Examples(examples=examples, inputs=[prompt])
|
||||
gr.on(
|
||||
triggers=[run_button.click, prompt.submit],
|
||||
fn=infer,
|
||||
inputs=[
|
||||
prompt,
|
||||
negative_prompt,
|
||||
seed,
|
||||
randomize_seed,
|
||||
width,
|
||||
height,
|
||||
guidance_scale,
|
||||
num_inference_steps,
|
||||
],
|
||||
outputs=[result, seed],
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
demo.launch(debug=True, share=True)
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 60 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 5.9 KiB |
|
|
@ -0,0 +1,3 @@
|
|||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:069ec77320ef4de477397e03f39e482c9f755122864894d32dd48696059182a8
|
||||
size 296082
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 76 KiB |
|
|
@ -0,0 +1,3 @@
|
|||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:a71d26f82d73293a93128d077e630e06cab96309ea7b56249187cb41042efbd0
|
||||
size 350720
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:077c718039fba1cfd412d6716129febb1b8bdc54f77f3a2dccc6ed4176846252
|
||||
size 269819
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 49 KiB |
|
|
@ -0,0 +1,3 @@
|
|||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:70b054b6e9484f9cf5679ba712d252aa47c7a8a8fbc80cf238538b85f7386540
|
||||
size 434881
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 45 KiB |
|
|
@ -0,0 +1,3 @@
|
|||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:bee89438e58beb702aa6940c002d3ff7e5dfd2bae8e697164e718f2170014d6f
|
||||
size 430757
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:6579bffac204ed8641e52f274c24476fbbd616257f5db5e6a01df670cd9ec0a7
|
||||
size 247542
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 81 KiB |
|
|
@ -1,6 +1,8 @@
|
|||
accelerate
|
||||
diffusers
|
||||
invisible_watermark
|
||||
torch
|
||||
accelerate
|
||||
huggingface_hub
|
||||
gradio
|
||||
transformers
|
||||
xformers
|
||||
spaces
|
||||
docling
|
||||
docling-core
|
||||
Loading…
Reference in New Issue